Accreditation Standard ISO/IEC 17025: 2017 CC-2088 **Certificate Number** Page 1 of 23 Validity 20.10.2018 to 19.10.2020 **Last Amended on 19.11.2018** | SI. | Quantity Measured /
Instrument | Range/Frequency | *Calibration Measurement
Capability (±) | Remarks | |-----|-----------------------------------|---|--|--| | | | ELECTRO TECH | NICAL CALIBRATION | | | I. | SOURCE |
 | | | | 1. | DC Voltage [#] | 10 mV to 100 mV
100 mV to 300 mV
300 mV to 500mV
500mV to 1000mV
1V to 1000V | 0.15% to 0.01%
0.01%
0.031% to 0.02%
0.02% to 0.013%
0.013% to 0.011% | Using Multifunction calibrator 1000A by Direct Method | | 2. | AC Voltage# | 10Hz to 1kHz 10mV to 100mV 20Hz to 1kHz 100mV to 300mV 50Hz to 1kHz 300mV to 3V 3V to 100V 100V to 500V 500V to 750V 1kHz to 20kHz 10mV to 100mV 100mV to 300mV 300mV to 3V 3V to 100V | 0.86% to 0.13% 0.13% to 0.1% 0.1% to 0.21% 0.21% to 0.13% 0.13% to 0.1% 0.19 to 0.127 % 0.86% to 0.3% 0.3% 0.3% 0.3% 0.28% to 0.28% 0.28% to 0.118% | Using Multifunction
calibrator 1000A by Direct
Method | | 3. | DC Current [#] | 100µA to 300µA
300µA to 300 mA
300mA to 10A
10A to 1000A | 0.095% to 0.081%
0.081% to 0.1%
0.1%
1.0% | Using Multifunction
calibrator 1000A
With Current Coil by
Direct Method | Vishal Shukla Convenor ISO/IEC 17025: 2017 **Accreditation Standard** CC-2088 **Certificate Number** Page 2 of 23 Validity 20.10.2018 to 19.10.2020 **Last Amended on 19.11.2018** | SI. | Quantity Measured /
Instrument | Range/Frequency | *Calibration Measurement
Capability (±) | Remarks | |-----|-----------------------------------|--|---|---| | 4. | AC Current [#] | 10Hz to 2 kHz
100µA to 300µA
300µA to 30mA
30mA to 300mA
300mA to 10A
10A to 20A
50Hz to 1 kHz
20A to 1000A | 0.6% to 0.45%
0.45% to 0.177%
0.177% to 0.168%
0.168% to 0.65%
0.65% to 0.74% | Using Multifunction calibrator 1000A by Direct Method | | 5. | Resistance [#] | 10Ω to 30Ω
30 Ω to 60 Ω
60 Ω to 300 Ω
300 Ω to 600 Ω
600 Ω to 3k Ω
3k Ω to 60k Ω
60k Ω to 300k Ω
300k Ω to 600k Ω
600k Ω to 3M Ω
3M Ω to 60M Ω
60M Ω to 300M Ω | 1.1% to 0.25% 0.25% to 0.12% 0.12% to 0.026% 0.026% to 0.034% 0.035% to 0.021% 0.021% to 0.039% 0.039% to 0.027% 0.027% to 0.031% 0.031% to 0.036% 0.036% to 0.29% 0.29% to 0.24% | Using Multifunction
calibrator 1000A by Direct
Method | | 6. | Capacitance [#] | 1kHz
100pF to 900pF
1nF to 9nF
10nF to 99nF
100nF to 999nF
1µF to 10µF | 3.5%
3.5%
3.5%
3.5%
3.5% | Using Standard
Capacitance Box by
Direct Method | | 7. | Inductance [#] | 1kHz
100μΗ to 100mH
100mH to 1H | 3.5%
3.5% | Using Standard
Inductance Box by Direct
Method | Vishal Shukla Convenor ISO/IEC 17025: 2017 **Accreditation Standard** CC-2088 **Certificate Number** Page 3 of 23 Validity 20.10.2018 to 19.10.2020 **Last Amended on 19.11.2018** | SI. | Quantity Measured /
Instrument | Range/Frequency | *Calibration Measurement
Capability (±) | Remarks | |-----|--|--|--|---| | 8. | Frequency [#] | 1Hz to 100kHz | 0.068% to 0.007% | Using Multifunction calibrator 1000A by Direct Method | | 9. | Temperature Simulation (Indicator, Controller Recorder) RTD Sensor 'J' Type Thermocouple 'T' Type Thermocouple 'R' Type Thermocouple 'R' Type Thermocouple 'S' Type Thermocouple 'S' Type Thermocouple 'D' Type Thermocouple 'N' Type Thermocouple 'B' | (-)200°C to 800°C
e (-)180°C to 750°C
e (-)200°C to 400°C
e (-)200°C to 1340°
e 50°C to 1700°C
e 50°C to 800°C
e (-)200°C to 1300° | 0.59°C
0.70°C
0.92°C
2.40°C
2.52°C
0.50°C | Using Multifunction
calibrator 1000A by Direct
Method | | II. | MEASURE | | | | | 1. | DC Voltage [#] | 1 mV to 100 mV
100 mV to 1000 \ | 0.42% to 0.009%
/ 0.009% | Using 6½ DMM Agilent
34401A by Direct Method | | | DC High Voltage [#] | 1 kV to 40 kV | 3.3% | Using HV Probe & DMM
by Direct Method | | 2. | AC Voltage [#] | 1kHz
10mV to 100mV
40Hz to 1kHz
100mV to 10V
10V to 100V
100V to 750V | 0.98% to 0.23 % 0.23% 0.23% to 0.12% 0.12% to 0.1% | Using 6½ DMM Agilent
34401A by Direct Method | Vishal Shukla Convenor ISO/IEC 17025: 2017 **Accreditation Standard** CC-2088 **Certificate Number** Page 4 of 23 Validity 20.10.2018 to 19.10.2020 **Last Amended on 19.11.2018** | SI. | Quantity Measured /
Instrument | Range/Frequency | *Calibration Measurement
Capability (±) | Remarks | |-----|-----------------------------------|--|---|--| | | AC High Voltage [#] | 50Hz
1kV to 28kV | 7.8% | Using HV Probe & DMM
by Direct Method | | 3. | DC Current [#] | 1mA to 10mA
10mA to 1A
1A to 3A
3A to 5A
5A to 20A | 0.32% to 0.083%
0.083% to 0.17%
0.17%
0.17% to 1.22%
1.22% to 0.61% | Using 6½ DMM Agilent
34401A & current shunt
Agilent 34330A by Direct
Method | | 4. | AC Current [#] | 40Hz to 1kHz
100mA to 1A
1A to 3A
3A to 30A | 0.35% to 0.2%
0.24% to 0.3%
0.3% to 0.92% | Using 6½ DMM Agilent
34401A & current shunt
Agilent 34330A by Direct
Method | | 5. | Resistance [#] | 10 Ω to 100 Ω
100 Ω to 1Μ Ω
1Μ Ω to 10Μ Ω
10Μ Ω to 100Μ Ω | 0.063% to 0.018%
0.018% to 0.047%
0.047% to 0.065%
0.065% to 0.94% | Using 6½ DMM Agilent
34401A by Direct Method | | 6. | Frequency [#] | 3Hz to 100kHz
100kHz to 20MHz | 0.12% to 0.013%
0.015% to 0.002% | Using 6½ DMM &
Frequency Counter by
Direct Method | | 7. | Timer** | 1s to 10s
10s to 1000s
1000s to 9900s
9900s to 86400s | 0.11s to 0.08s
0.08s to 0.175s
0.175s to 1.4s
1.4s to 5s | Using Standard Timer by
Direct Method | Vishal Shukla Convenor ISO/IEC 17025: 2017 **Accreditation Standard** CC-2088 **Certificate Number** Page 5 of 23 Validity 20.10.2018 to 19.10.2020 **Last Amended on 19.11.2018** | SI. | Quantity Measured /
Instrument | | *Calibration Measurement
Capability (±) | Remarks | |-----|---|--|--|--| | 8. | Temperature Simulation (Indicator, Controller, Recorder) RTD Sensor 'J' Type Thermocouple 'K' Type Thermocouple 'R' Type Thermocouple 'S' Type Thermocouple 'S' Type Thermocouple 'E' Type Thermocouple 'N' Type Thermocouple 'N' Type Thermocouple 'B' Type Thermocouple | (-)200°C to 800°C
(-)180°C to 750°C
(-)200°C to 400°C
(-)200°C to 1340°C
50°C to 1700°C
100°C to 1700°C
(-)200°C to 1000°C
(-)200°C to 1300°C | 0.32°C
0.49°C
0.60°C
0.72°C
2.41°C
2.41°C
0.39°C
0.75°C
2.90°C | Using MFC Unomat TRX
by Direct Method | Vishal Shukla Convenor **Accreditation Standard** ISO/IEC 17025: 2017 CC-2088 6 of 23 **Certificate Number** Page Validity 20.10.2018 to 19.10.2020 **Last Amended on 19.11.2018** | SI. | Quantity Measured /
Instrument | Range/Frequency | *Calibration Measurement
Capability (±) | Remarks | |-----|---|--|--|---| | | | MECHANICA | AL CALIBRATION | | | I. | PRESSURE INDICATI | NG DEVICES | | | | 1. | Vacuum [#] (Digital / Dial Gauge, Transmitter, Transducers) | (-)0.9 to 0 bar | 0.2 % rdg | Using Digital Pressure
Calibrator by comparison
method as per DKD-R-6-1 | | 2. | Pressure (Pneumatic) # (Digital / Dial Gauge, Magnehelic Gauge, Manometer, Differential Pressure, Transmitter, Transducers) | 0 to 50 mmWc
>50 to 200 mmWc
>200 to 2000 mmWc
0 to 1 bar
>1 to 40 bar | 0.18 mmWc
0.2 mmWc
1.5 mmWC
0.2 % rdg
0.27 % rdg | Using Differential Pressure Calibrator / Digital Pressure Calibrator & Digital Pressure Gauge by comparison method as per DKD-R-6-1 | | 3. | Pressure (Hydraulic) [#] (Digital / Dial Gauge, Transmitter, Transducers) | 1 to 70 bar
>70 to 700 bar | 0.11 %rdg
0.14 % rdg | Using Digital Pressure
Gauge by comparison
method as per DKD-R-6-1 | | 4. | Pressure (Hydraulic) [#] (Digital / Dial Gauge, Transmitter, Transducers) | 7.0 bar to 700 bar | 0.02 %rdg | Using Dead Weight
Tester by comparison
method as per DKD-R-6-1 | Vishal Shukla Convenor ISO/IEC 17025: 2017 **Accreditation Standard** CC-2088 7 of 23 **Certificate Number** Page Validity 20.10.2018 to 19.10.2020 **Last Amended on 19.11.2018** | SI. | Quantity Measured /
Instrument | Range/Frequency | *Calibration Measuremen
Capability (±) | t Remarks | |------|-------------------------------------|---|---|--| | II. | ACOUSTICS | | | | | 1. | Sound Level Meter # | 94 dB
114 dB | 0.52 dB
0.25 dB | Using Sound Level Calibrator
by comparison method as
per IS 15575 / OIML-R-58,
AVM-WI-M15 | | III. | WEIGHTS | | | | | 1. | Mass #
Calibration of
Weights | 1 mg 2 mg 5 mg 10 mg 20 mg 50 mg 100 mg 200 mg 500 mg 1 g 2 g 5 g 10 g 20 g 100 g 200 g | 0.02 mg | Using Weights of accuracy class E2 & Digital Balance up to 60/200 g readability 0.01/0.1 mg by Substitution method & ABBA Weighing Cycle procedure. Calibration of Class F2 Accuracy and Coarser based on OIML-R-111 | | | | 500 g
1 kg
2 kg
5 kg
10 kg
20 kg | 10 mg
20 mg
20 mg
100 mg
200 mg
200 mg | Using Weights of accuracy class F1 & Electronic Balance up to 4100 g / 22000 g readability 0.01 g / 0.1 g by Substitution method & ABBA Weighing Cycle procedure. Calibration of Class M1 Accuracy and Coarser based on OIML-R-111 | Vishal Shukla Convenor ISO/IEC 17025: 2017 **Accreditation Standard** CC-2088 **Certificate Number** Page 8 of 23 Validity 20.10.2018 to 19.10.2020 **Last Amended on 19.11.2018** | | Quantity Measured /
Instrument | Range/Frequency | *Calibration Measuremen
Capability (±) | t Remarks | |-----|--|--|--|--| | IV. | WEIGHING SCALE AI | ND BALANCE | | | | 1. | Calibration of Weighing Balance # d= 0.001 mg and Coarser d= 0.01 mg and Coarser d= 0.1 mg and Coarser d= 10 mg and Coarser d= 10 mg and Coarser d= 10 g and Coarser d= 10 g and Coarser d= 10 g and Coarser | 0 to 5 g 0 to 60 g >60 g to 200 g >200 g to 4 kg >4 kg to 20 kg >20 kg to 100 kg >100 kg to 500 kg >500 kg to 1000 kg | 0.008 mg 0.05 mg 0.2 mg 0.02 g 0.2 g 20 g 80 g 500 g | Using Standard Weights accuracy class E2. Calibration of Weighing Balances of Class-I and coarser as per OIML-R-76-1 Using Standard Weights accuracy class F1. Calibration of Weighing Balances of Class-II and coarser as per OIML-R-76-1 Using Standard Weights accuracy class M1. Calibration of Weighing | | | d= 200 g and
Coarser | >1000 kg to 2000 kg | 800 g | Balances of Class-III and coarser as per OIML-R-76-1 | | ٧. | VOLUME | | ٠ | | | 1. | Piston Pipette #
(Micro Pipette) | 10 μl to 100 μl
>100 μl to 5000 μl | 0.13 μl
0.74 μl | Using Digital precision Balances up to 60/200 g readability 0.01/0.1 mg & Distilled water of known density. as per ISO 8655-6, ISO/TR 20461 | Vishal Shukla Convenor ISO/IEC 17025: 2017 **Accreditation Standard** CC-2088 **Certificate Number** Page 9 of 23 20.10.2018 to 19.10.2020 Validity **Last Amended on 19.11.2018** | SI. | Quantity Measured /
Instrument | Range/Frequency | *Calibration Measurement
Capability (±) | Remarks | |-----|--|--|--|--| | 2. | Volumetric
Glassware [#]
(Glass Burette) | 0.1 ml to 50 ml
>50 ml to 100 ml | 2.0 μl
8.5 μl | Using Digital precision Balances upto 60/210g readability 0.01mg/0.1mg & Distilled water of known density. as per ISO 4787, ISO/TR 20461 | | | Volumetric
Glassware [#]
(Glass Pipette-
Graduated / Non-
Graduated) | 0.1 ml to 50 ml
>50 ml to 100 ml | 2.0 μl
8.5 μl | Using Digital precision Balances upto 60/210g readability 0.01mg/0.1mg & Distilled water of known density. as per ISO 4787, ISO/TR 20461 | | | Volumetric Glassware* (Measuring Cylinder, Volumetric Flask, Conical Flask, Dispenser, Beaker, Specific Gravity Cup, Pycnometer) | 5 ml to 100 ml
>100 ml to 2000 ml
>2000 ml to 10000 ml | 8.5 μl
75.0 μl
6.5 ml | Using Digital precision Balances up to 60 / 210 / 4100 / 22000g, readability 0.01mg / 0.1mg / 0.01g / 0.1g & Distilled water of known density. as per ISO 4787, ISO/TR 20461 | | VI. | TORQUE GENERATII | NG DEVICES | | | | 1. | Torque Wrench, Torque Screw Driver* (Type-I Class-A, B, C, D, E. Type-II Class-A, B, C, D, E, F, G) | 0.1 Nm to 2 Nm
>2 Nm to 20 Nm
>20Nm to 1000 Nm | 1.0% rdg.
1.0% rdg
0.8% rdg | Using Digital Torque
Calibration System by
comparison method as
per ISO 6789 | Vishal Shukla Convenor ISO/IEC 17025: 2017 **Accreditation Standard** CC-2088 **Certificate Number** Page 10 of 23 Validity 20.10.2018 to 19.10.2020 **Last Amended on 19.11.2018** | SI. | Quantity Measured /
Instrument | Range/Frequency | *Calibration Measurement
Capability (±) | Remarks | |-------|---|--|--|--| | VII. | MOBILE FORCE ME | ASURING SYSTEM | <u>:</u> | | | 1. | Push Pull Gauge,
Force Gauge [#] | 5N to 50 N
>50 to 500 N | 0.9 N
0.2 N | Using Standard Slotted
Weights As Per ASTM E4-
16 | | VIII. | ACCELERATION AN | D SPEED | - | | | 1. | Tachometer, RPM Indicator * (Digital/Mechanical) (Non Contact Type) | 60 rpm to 2000 rpm
>2000 rpm to
99950rpm | 0.7%
0.06% | Using Digital Tachometer
by comparison method as
per IS 12508 | | 2. | Speed,
RPM Indicator* | 60rpm to 99950rpm | 0.8% | Using Digital Tachometer
by comparison method as
per IS 12508 | | 3. | Speed,
RPM Indicator*
(Contact Type) | 60rpm to 99950rpm | 0.06% | Using Digital Tachometer
by comparison method as
per IS 12508 | | IX. | DENSITY AND VISC | OSITY | - | | | 1. | Density
Hydrometers | 0.6 g/ml to 1.6 g/ml | 0.0013 g/ml | Using Standard Hydrometer and appropriate Liquid by comparison method as per IS 3104-2 | Vishal Shukla Convenor ISO/IEC 17025: 2017 **Accreditation Standard** CC-2088 **Certificate Number** Page 11 of 23 Validity 20.10.2018 to 19.10.2020 **Last Amended on 19.11.2018** | SI. | Quantity Measured /
Instrument | , , , , | Calibration Measurement
Capability (±) | Remarks | |-----|--|--|---|--| | Χ. | DIMENSION (BASIC MI | EASURING INSTRUMENT | S, GAUGE, ETC.) | | | 1. | Caliper ^{\$}
(Vernier / Dial / Digital)
L.C.: 0.01 mm [¢] | 0 to 300 mm
0 to 600 mm
0 to 1000 mm
0 to 1500 mm
0 to 2000 mm | 12.4 µm
16.2 µm
20.7 µm
21.7 µm
39.0 µm | Using Gauge Block, Long
Gauge Block and Caliper
Checker by comparison
method as per IS-3651
(Part-1,2 & 3) | | 2. | Inside Caliper ^{\$}
(Mech / Dial / Digital)
L.C.: 0.01 mm ^Ф | 10 to 300 mm
10 to 600 mm | 10.3 μm
12.2 μm | Using Caliper Checker by comparison method as per AVM-WI-D-02 | | 3. | Height Gauge #
(Mech / Dial / Digital)
L.C.: 0.01 mm ^Φ | 0 to 300 mm
0 to 600 mm
0 to 1000 mm | 9.9 μm
12.0 μm
18.8 μm | Using Gauge Block, Long
Gauge Block and Caliper
Checker by comparison
method as per IS-2921 | | 4. | External Micrometer [®] (Mech / Digital / Indicating) L.C.: 0.001 mm ^Φ L.C.: 0.01 mm | 0 to 100 mm
> 100 mm to 300 mm
> 300 mm to 600 mm
>600 mm to 1000 mm
>1000 mm to 2000 mm | 1.0 µm
4.9 µm
9.7 µm
15.8 µm
38.4 µm | Using Gauge Block, Long
Gauge Block by
comparison method as per
IS-2967 | Vishal Shukla Convenor ISO/IEC 17025: 2017 **Accreditation Standard** CC-2088 **Certificate Number** Page 12 of 23 Validity 20.10.2018 to 19.10.2020 **Last Amended on 19.11.2018** | SI. | Quantity Measured /
Instrument | Range/Frequency | *Calibration Measurement
Capability (±) | Remarks | |-----|---|--|--|--| | 5. | Internal Micrometer ^{\$}
(Caliper Type)
(Mech / Digital)
L.C.: 0.001 mm ^{\$} | 5 mm to 100 mm | 1.3 µm | Using Gauge Block by
comparison method as
per IS-2966 | | 6. | Internal Micrometer ^{\$}
(Stick / Tubular Type)
L.C.: 0.01 mm ^{\$} | 13 mm to 100 mm
>100 mm to 500 mm
>500 mm to 2100 mm | 5.9 μm
8.0 μm
39.0 μm | Using Gauge Block, Long
Gauge Block & Dial Test
Indicator by comparison
method as per IS-2966 | | 7. | Depth Micrometer ^s
(Mech / Digital)
L.C.: 0.001 mm ^{\$} | 0 to 150 mm
0 to 300 mm | 5.33 μm
5.33 μm | Using Gauge Block, Long
Gauge Block by
comparison method as
per BS-6468 | | 8. | Depth Caliper ^{\$}
(Mech / Dial / Digital)
L.C.: 0.01 mm ^{\$} | 0 to 300 mm
0 to 600 mm | 8.2 μm
13.7 μm | Using Gauge Block,
Caliper Checker, Long
Gauge Block by
comparison method as
per IS-4213 | | 9. | Dial Indicator [®]
(Dial / Digital)
L.C.: 0.001 mm ^Φ | 0 to 100 mm | 1.82 μm | Using Length Measuring
Machine by comparison
method as per IS-2092 | Vishal Shukla Convenor ISO/IEC 17025: 2017 **Accreditation Standard** CC-2088 **Certificate Number** Page 13 of 23 Validity 20.10.2018 to 19.10.2020 **Last Amended on 19.11.2018** | SI. | Quantity Measured /
Instrument | Range/Frequency | *Calibration Measurement
Capability (±) | Remarks | |-----|---|------------------------------|--|---| | 10. | Dial Test Indicator ^{\$} (Dial / Digital) L.C.: 0.001 mm ^Φ L.C.: 0.01 mm ^Φ | 0 to 0.14 mm
0 to 1.6 mm | 0.7 μm
0.7 μm | Using Length Measuring
Machine by comparison
method as per IS-11498 | | 11. | Dial Caliper Gauge [®]
L.C.: 0.01 mm ^Φ | 0 to 100 mm | 6.1 µm | Using Gauge Block by
comparison method as
per AVM-WI-D23 | | 12. | Dial Thickness
Gauge ^{\$}
L.C.: 0.001 mm ^Φ
L.C.: 0.01 mm ^Φ | 0 to 25 mm
0 to 100 mm | 1.0 μm
6.0 μm | Using Gauge Block by
comparison method as
per AVM-WI-D10 | | 13. | Dial Bore Gauge [®]
Span Dia.
(6mm to 400mm)
L.C.: 0.001 mm ^Ф | 1 mm (Transmission
Error) | 1.1 µm | Using Length Measuring
Machine by comparison
method as per AVM-WI-
D21 | | 14. | LVDT,
Electronic Probe with
DRO ^{\$}
L.C.:0.0001mm [¢] | 0 to 100 mm | 0.81 μm | Using Gauge Block by
comparison method as
per AVM-WI-D09 | | 15. | Micrometer Head ^{\$}
L.C.:0.001mm [¢] | 0 to 50mm | 1.0 µm | Using Gauge Block,
Electronic Comparator by
comparison method as
per IS-9483 | Vishal Shukla Convenor ISO/IEC 17025: 2017 **Accreditation Standard** CC-2088 **Certificate Number** Page 14 of 23 Validity 20.10.2018 to 19.10.2020 **Last Amended on 19.11.2018** | SI. | Quantity Measured /
Instrument | Range/Frequency | *Calibration Measurement
Capability (±) | Remarks | |-----|---|-------------------|--|---| | 16. | Feeler Gauge ^{\$} | 0.005 mm to 2mm | 1.42 µm | Using Length Measuring
Machine by comparison
method as per IS-3179 | | 17. | Surface Plate [#] | 3500 mm x 2600 mm | 3.1√(L+W)/150 µm
Where L+W in mm | Using Spirit Level
L.C.:0.02 mm/m as per
IS-12937, IS-2285, IS-
7327 | | 18. | Comparator Stand* | 300 mm x 300 mm | 2.0 μm | Using Surface Plate
With Dial Test Indicator as
per IS-7599 | | 19. | Straight Edges ^{\$} | 50 to 1000 mm | 2.0 μm | Using Surface Plate
With Dial Test Indicator as
per IS-12937 & IS-2220 | | 20. | Engineers Parallel \$ | 50 to 1000 mm | 2.0 μm | Using Surface Plate
With Dial Test Indicator as
per IS-4241 | | 21. | Right Angle,
Try Square,
Engineers Square ^{\$}
(Parallelism,
Squareness) | 50 to 300 mm | 4.34 μm
8.5 μm | Using Surface Plate
With Slip Gauge Set, Dial
Test Indicator & Granite
Square as per IS-2103 | Vishal Shukla Convenor ISO/IEC 17025: 2017 **Accreditation Standard** CC-2088 **Certificate Number** Page 15 of 23 Validity 20.10.2018 to 19.10.2020 **Last Amended on 19.11.2018** | SI. | Quantity Measured /
Instrument | Range/Frequency | *Calibration Measurement
Capability (±) | Remarks | |-----|--|-------------------------------------|--|--| | 22. | Angle Plate,
Box Angle Plate ^{\$}
(Parallelism,
Flatness,
Squareness) | 100 to 300 mm | 4.3 μm
8.6 μm | Using Surface Plate
With Slip Gauge Set, Dial
Test Indicator & Granite
Square as per IS-2554,
IS-6232, IS-6973 | | 23. | V-Block * (Squareness, Parallelism, Symmetricity) | 50 to 200 mm | 8.5 μm
7.1 μm
7.1 μm | Using Surface Plate
With Slip Gauge Set,
Granite Square, Test
Mandrel & Dial Test
Indicator as per IS-2949 | | 24. | Coating Thickness
Gauge [§]
L.C.: 0.1 µm ^Φ | 10 μm to 2000 μm | 3.2 µm | Using Standard Foil by
comparison method as
per AVM-WI-D26 | | 25. | Ultra Sonic
Thickness Gauge ^{\$}
L.C.: 0.01mm ⁰ | 0 to 100 mm | 54.4 μm | Using Gauge Block as per
AVM-WI-D11 | | 26. | Plain Plug Gauge,
Setting Plug Gauge ^{\$} | 1 mm to 200mm | 1.6 μm | Using Length Measuring
Machine, Gauge Block by
comparison method as
per IS-3455 | | 27. | Snap gauge,
Gap Gauge ^{\$} | 3 mm to 150 mm
>150 mm to 500 mm | 2.0 μm
5.8 μm | Using Gauge Block, Long
Gauge Block as per IS-
3455 | Vishal Shukla Convenor **Accreditation Standard** ISO/IEC 17025: 2017 **Certificate Number** CC-2088 Page 16 of 23 Validity 20.10.2018 to 19.10.2020 **Last Amended on 19.11.2018** | SI. | Quantity Measured /
Instrument | Range/Frequency | *Calibration Measurement
Capability (±) | Remarks | |-----|---|-----------------|--|---| | 28. | Thread Plug Gauge ^{\$} | 2 mm to 100 mm | 3.9 µm | Using Length Measuring
Machine, Thread
Measuring Wire Set as
per IS-2334, IS-4218, IS-
6311, ISO-228,
ANSI/ASME-B1.2 | | 29. | Bench Center * (Parallelism & Co- axiality Measurement) | 300 to 1000 mm | 11.8 μm | Using Test Mandrel & Dial
Test Indicator as per IS-
5980 | | 30. | Thread Pitch Gauge ^{\$} | 0.1 to 7 mm | 7.92 µm | Using Profile Projector as per IS 4211 | | 31. | Radius Gauge,
Radius
Measurement ^{\$} | 0.1 to 50 mm | 9.8 µm | Using Profile Projector as per IS 5273 | | 32. | Taper Scale ^{\$} | 0.1 to 15 mm | 5.5 μm | Using Profile Projector as per AVM-WI-D44 | | 33. | Wet Film Thickness
Gauge ^{\$} | 10 to 3000 μm | 5.5 μm | Using Profile Projector as per AVM-WI-D45 | | 34. | Test Sieve \$ | 0.025 to 125 mm | 8.03 µm | Using Profile Projector as per IS 460 | | 35. | Steel Scale \$
L.C.: 0.5 mm ^Φ | 0 to 1000 mm | 36.7 µm | Using Tape & Scale
Calibrator as per IS 1481 | | 36. | Bevel Protector \$
L.C.: 1' [©] | 0 to 360° | 2.0' of arc | Using Angle Gauge Set
as per IS 4239 | Vishal Shukla Convenor ISO/IEC 17025: 2017 **Accreditation Standard** CC-2088 **Certificate Number** Page 17 of 23 Validity 20.10.2018 to 19.10.2020 **Last Amended on 19.11.2018** | SI. | Quantity Measured /
Instrument | Range/Frequency | *Calibration Measurement
Capability (±) | Remarks | |-----|--|-------------------------|--|--| | 37. | Angle Protector,
Combination Set ^{\$}
L.C.: 1° [©] | 0 to 180° | 35' | Using Angle Gauge Set
as per AVM-WI-D47 | | 38. | Industrial Angle
Gauges,
Angle
Measurements ^{\$} | 0 to 360° | 4.63' of arc | Using Profile Projector as per AVM-WI-D48 | | 39. | Weld Fillet Gauge ^{\$} | 0 to 100 mm
0 to 60° | 27.9 μm
35' | Using Profile Projector as per AVM-WI-D49 | | 40. | Measuring Tape,
Pie Tape \$ | 0 to 50 meter | 59 √L µm Where 'L' is in
meter | Using Tape & Scale
Calibrator as per IS 1269 | | 41. | Plain Ring Gauge,
Setting Ring Gauge ^{\$} | 3 to 100 mm | 2.0 µm | Using Length Measuring
Machine as per IS 3485,
IS 3455 | | 42. | Thread Ring Gauge ^{\$} | 4 to 100 mm | 2.0 µm | Using Length Measuring
Machine, Master Setting
Ring as per IS-2334, IS-
4218, IS-6311, ISO-228,
ANSI/ASME-B1.2 | | 43. | 3 Point Micrometer
L.C.: 0.001 mm [©] | 4 to 100 mm | 3.31 µm | Using Master Ring Gauge
as per AVM-WI-D50 | Vishal Shukla Convenor **Accreditation Standard** ISO/IEC 17025: 2017 **Certificate Number** CC-2088 Page 18 of 23 Validity 20.10.2018 to 19.10.2020 **Last Amended on 19.11.2018** | SI. | Quantity Measured /
Instrument | Range/Frequency | *Calibration Measurement
Capability (±) | Remarks | |-----|---|------------------|--|---| | II. | DIMENSION (PRECIS | SION EQUIPMENTS) | | | | 1. | Caliper Checker,
Depth Micrometer
Checker ^{\$} | 0 to 300 mm | 5.0 μm | Using Gauge Block, Long
Gauge Block, Electronic
Probe by comparison
method as per AVM-WI-
D30 | | 2. | Caliper Checker \$ | 0 to 600mm | 9.8 µm | Using Gauge Block, Long
Gauge Block, Electronic
Probe by comparison
method as per AVM-WI-
D30 | | 3. | Cylindrical
Measuring Pins ^{\$} | 0.1 mm to 20 mm | 1.4 µm | Using Length Measuring
Machine as per IS-11103 | | 4. | Cylindrical Setting
Master ^{\$} | 5 mm to 100 mm | 1.8 µm | Using Length Measuring
Machine by comparison
method as per IS-4349 | | 5. | Dial Calibration
Tester ^{\$}
L.C .:0.0001mm ^Φ | 0 to 25mm | 0.9 μm | Using Gauge Block,
Electronic Comparator by
comparison method as
per AVM-WI-D32 | | 6. | Electronic Height
Gauge,
2D Height Gauge [#]
L.C.: 0.0001 mm ^Φ | 0 to 600 mm | 8.8 µm | Using Gauge Block, Long
Gauge Block by
comparison method as
per IS-2921 | Vishal Shukla Convenor **Accreditation Standard** ISO/IEC 17025: 2017 **Certificate Number** CC-2088 Page 19 of 23 Validity 20.10.2018 to 19.10.2020 **Last Amended on 19.11.2018** | SI. | Quantity Measured /
Instrument | Range/Frequency | *Calibration Measurement
Capability (±) | Remarks | |-----|---|---|--|---| | 7. | Height Master ^{\$} L.C.: 0.002 mm ^Φ | 0 to 300 mm
0 to 600 mm | 5.1 μm
9.8 μm | Using Gauge Block, Long
Gauge Block, Electronic
Probe by comparison
method as per AVM-WI-
D40 | | 8. | Length Bar ^{\$} | 10 mm to 100 mm | 1.9 μm | Using Length Measuring
Machine as per IS-7014 | | 9. | Length Bar,
Long Gauge Block ^{\$} | 100mm to 500 mm | 6.1 µm | Using Gauge Block,
Electronic Probe by
comparison method as
per IS-7014, IS-2984 | | 10. | Length Measuring
Machine [#]
(Single Axis)
L.C.: 0.0001 mm ^Φ | 0 to 100 mm | 2.0 µm | Using Gauge Block by
comparison method as
per AVM-WI-D41 | | 11. | Micrometer Setting
Rod ^{\$} | 25 mm to 100 mm
>100mm to 600 mm | 1.95 μm
7.31 μm | Using Length Measuring
Machine
Gauge Block, Electronic
Comparator by
comparison method as
per AVM-WI-D29 | | 12. | Profile Projector, Video Measuring Machine [#] L.C.: 0.001 mm ^Φ L.C.: 1" [†] | Linear 0 to 300mm
Angle 360°
Magnification 10X to
100X | 6.7 μm
2.1 minute
4.7% | Using Glass Scale, Angle
gauge set by comparison
method as per AVM-WI-
D36 | Vishal Shukla Convenor ISO/IEC 17025: 2017 **Accreditation Standard** CC-2088 **Certificate Number** Page 20 of 23 Validity 20.10.2018 to 19.10.2020 **Last Amended on 19.11.2018** | SI. | Quantity Measured /
Instrument | Range/Frequency | *Calibration Measurement
Capability (±) | Remarks | |-----|--|-----------------|--|---| | 13. | Standard Foil \$ | 0.01 mm to 2mm | 1.47 μm | Using Length Measuring
Machine by comparison
method as per AVM-WI-
D26 | | 14. | Thread Measuring
Wire ^{\$} | 0.17 to 6.5 mm | 1.5 μm | Using Length Measuring
Machine as per IS-11103,
IS-6311 | Vishal Shukla Convenor ISO/IEC 17025: 2017 **Accreditation Standard** CC-2088 **Certificate Number** Page 21 of 23 Validity 20.10.2018 to 19.10.2020 **Last Amended on 19.11.2018** | SI. | Quantity Measured /
Instrument | Range/Frequency | *Calibration Measurement
Capability (±) | Remarks | |---------------------|---|------------------------------------|--|---| |

 | | THERMAL (| <u>CALIBRATION</u> | | | ī. | TEMPERATURE | | | | | 1. | Liquid-In-Glass
Thermometers [#] | (-)80°C to 50°C
>50°C to 250°C | 0.21°C
0.32°C | Using RTD (PT 100), 6½
DMM. with Cryostatic
Circulator & Oil Bath by
comparison method | | 2. | RTD's, Thermocouple with & without controllers, Temperature Indicator With Sensor, Recorders With Probes, Temperature Baths, Dry Block Calibrators, Low Temperature Bath, Digital Thermometers With Sensor, Temperature Gauges, Temperature Switches, Data Logger With Sensor, Temperature Transmitter, Temperature Transducer# | >100°C to 400°C
>400°C to 500°C | 0.2°C
0.26°C
2.10°C
2.92°C | Using RTD(PT 100), S- type Thermocouple, 6½ DMM with Cryostatic Circulator & Dry Block Temperature Calibrators by Comparison method | Vishal Shukla Convenor ISO/IEC 17025: 2017 **Accreditation Standard** CC-2088 **Certificate Number** Page 22 of 23 Validity 20.10.2018 to 19.10.2020 **Last Amended on 19.11.2018** | SI. | Quantity Measured /
Instrument | Range/Frequency | *Calibration Measurement
Capability (±) | Remarks | |-----|--|---|--|--| | 3. | Temperature By Spatial Mapping, Thermal Chambers, Furnaces, Ovens, Incubators, Water Bath, Refrigerator, Deep Freezers, Autoclaves* | (-)80°C to 100°C
>100°C to 400°C
>400°C to 600°C
>600°C to 800°C
>800°C to 1200°C | 0.65°C
1.5°C
2.3°C
2.5°C
3.5°C | Using Thermocouple Type-K, Multi Channel Temperature Recorder by Direct method | | 4. | Thermal Chambers, Furnaces, Ovens, Incubators, Dry Block Furnace, Water Bath, BOD Incubator, Centrifuge, Dryer, Refrigerator, Deep Freezers, Autoclaves* | -80°C to 50°C
>50°C to 200°C
>200°C to 400°C
>400°C to 500°C
>500°C to 1200°C | 0.65°C
0.3°C
0.32°C
1.87°C
3.0°C | Temperature Calibrator With RTD / Thermocouple Sensor (Single Position Calibration) by Direct method | | 5. | Thermal Chambers,
Furnaces,
Dry Block Furnace* | >1200°C to 1500°C | 4.7°C | Temperature Calibrator With Thermocouple Sensor (Single Position Calibration) by Direct method | | 6. | Non-Contact Type
Thermometer#
(Infrared
Thermometer,
Digital Pyrometer) | 50°C to 300°C
>300°C to 900°C | 2.85°C
3.4°C | Infrared Thermometer & Black Body Source by comparison method | Vishal Shukla Convenor Laboratory AVM Labs Pvt. Ltd., Door No 49, Moorthy Nagar, 3rd Street, Chettiar Agaram, Porur, Chennai, Tamil Nadu Accreditation Standard ISO/IEC 17025: 2017 Certificate Number CC-2088 Page 23 of 23 Validity 20.10.2018 to 19.10.2020 Last Amended on 19.11.2018 | SI. | Quantity Measured /
Instrument | Range/Frequency | *Calibration Measurement
Capability (±) | Remarks | |-----|---|--|--|---| | II. | SPECIFIC HEAT AND | HUMIDITY | | | | 1. | Temperature & Humidity Indicators (Digital / Analog), Thermo-Hygrometer, Thermo- hygrographs, Humidity Sensor With and without Indicator, Controller, Data Logger, Recorder, Humidity Transmitter# (Temperature, Relative Humidity) | 10% to 95% RH
@25°C
10°C to 50°C
@50% RH | 0.92% RH
0.7°C | Digital RH Indicator with
Sensor & Humidity
Generator by comparison
method | | 2. | Temperature Indicator of Environmental &Climatic Chamber* | 10% to 95% RH
@25°C
10°C to 50°C
@ 50% RH | 0.95% RH
0.7°C | Digital RH Indicator with
Sensor & Humidity
Generator by comparison
method | | 3. | Thermal Mapping of Environmental &Climatic Chamber* | 10% to 95% RH
10°C to 50°C | 1.24% RH
1.5°C | Digital RH Datalogger
with Sensor by direct
method | ^{*} Measurement Capability is expressed as an uncertainty (±) at a confidence probability of 95.45% φ Laboratory can also calibrate instruments/devices of coarser resolution / least count within the accredited range using same reference standard/ master equipment under the scope of accreditation | Vishal Shukla | Avijit Das | |---------------|-----------------| | Convenor | Program Manager | ^{\$} Only in Permanent Laboratory [♣] Only for Site Calibration [#] The Laboratory also capable for site calibration however, the uncertainty at site depends on the prevailing actual environmental conditions and master equipment used